Multiplication and Division

Year 2

Multiplication as Repeated Addition

Vocabulary:

Group Equal Unequal Repeated Addition Multiplication Expression Equation Part Altogether Represents Amount Size

9×10

We can skip count in multiples of __ to work out the total amount.
$10,20,30,40 \ldots$ there are 90 pencils altogether.

The
\qquad represents the number of groups.
\qquad represents the number of \qquad _ in each group.
\qquad _ represents the total number of \qquad _.

The 3 represents the number of groups. represent \square
each group.
15 represents the total number of eggs.

We can represent equal groups as repeated addition.

There are 3 groups of 5 .
$5+5+5$
3×5
$5+5+5=3 \times 5$

We can represent repeated addition using a multiplication expression.

The 5 represents the number of eggs in

Multiplication and Division

Year 2

Grouping problems: missing factors and division

```
Vocabulary:
Multiplication Division Factor 'divided by' Represents Skip Counting
Multiplication facts Groups Amount Size
```


$$
\begin{aligned}
& 6 \times 10=60 \\
& 60 \div 10=6
\end{aligned}
$$

The 60 cm represents the length of the ribbon.
The 10 represents the size of each piece.
The 6 represents the number of pieces we can make.

$$
45 \div 5=9
$$

We can use \div to mean 'divided by'
We can use our knowledge of times tables to help solve division problems.

Multiplication and Division

Year 3

Multiplication and Division Structures

Vocabulary:

Multiplication	Division Commutative		Grouping (Quotitive)		Sharing (Partitive)	
'Divided into'	'Divided between'		ivided by'	Equation	Factor	Product
	30	\div	5	$=$	6	
	dividend	\div	divis	$=$	uotient	

Identify that multiplication is commutative.

$$
4 \times 5=5 \times 4
$$

Factor times factor is equal to product.
The order of the factors does not affect the product.

$14 \div 2=7$

14	
7	7

The same equation can be represented in both grouping and sharing contexts.

7 times 2 is 14 , so $14 \div 2=7$

$14 \div 2=7$

14						
2	2	2	2	2	2	2

Division equations can be used to represent 'grouping' problems.

We can use multiplication facts to find the number of groups.

(Quotitive division)

15 divided into groups of 5 is

$$
\text { equal to } 3 .
$$

$$
5+5+5=15
$$

$$
15-5-5-5=0
$$

$$
15 \div 5=3
$$

Division equations can be used to represent 'sharing' problems.

We can use multiplication facts to find the size of groups.

(Partitive division)

Four fives are four each.
20 divided between 5 is equal

$$
\begin{aligned}
& \text { to } 4 \text { each. } \\
& 20 \div 5=4
\end{aligned}
$$

Multiplication and Division

Year 4

Multiplying and Dividing by 10 and 100

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

Develop language in order to multiply and divide by 10 or 100.

80 is ten times bigger than 8. 8 is ten times smaller than 80.
80 is ten times the size of 8
8 is one-tenth the size of 80 .

800 is one hundred times bigger than 8. 8 is one hundred times smaller than 800. 800 is on hundred times the size of 8
8 is one-hundredth the size of 80 .

$$
8 \times 1=8
$$

8×1 ten -8 tens
8×1 hundred $=8$ hundreds

$10 \quad 10$
$10 \quad 10$
$10 \quad 10$
1010
$8 \times 1=8 \quad 8 \times 10=80$
$8 \times 100=800$
\qquad is
\qquad —.

Generalisations

All multiples of 10 have a ones digit of zero.

All multiples of $\mathbf{1 0 0}$ have both a tens and ones digit of zero.

To find the inverse of \qquad times as many, you divide by \qquad -

If one factor if made \qquad times bigger/smaller then the product will be ten times bigger/smaller
\qquad

one-tenth of the size
one hundred times the size

Multiplication and Division

Year 4

Manipulating the Multiplicative Relationship

```
Vocabulary:
Multiply Divide Commutative Groups of Times Equal to Factors
Product Quotient Dividend Divisor Represents Array
```


Understand that multiplication is commutative and the factors can be
2 groups of 7 is equal to 14 .
2, 7 times is equal to 14.
2 groups of 7 is equal to 7 , two times.

\square

Multiplication and Division

Year 4

The Distributive Property of Multiplication

Vocabulary:

Multiplication Distributive Law Adjacent Multiples Factors Partitioning

Equations Expressions Arrays Part-whole model Difference

$0 \times 6=0$	$6 \times 0=0$
$1 \times 6=6+6$	$6 \times 1=6{ }^{2}+6$
$2 \times 6=12+6$	$6 \times 2=12+6$
$3 \times 6=18+6$	$6 \times 3=18+6$
$4 \times 6=24+6$	$6 \times 4=24+6$
$5 \times 6=30$,	$6 \times 5=302+6$
$6 \times 6=36$	$6 \times 6=36$
$7 \times 6=42$	$6 \times 7=42$
$8 \times 6=48$	$6 \times 8=48$
$9 \times 6=54$	$6 \times 9=54$
$10 \times 6=60$	$6 \times 10=60$
$11 \times 6=66$	$6 \times 11=66$
$12 \times 6=72$	$6 \times 12=72$

$4 \times 6+6$
Five sixes is one more six than four sixes.

$3 \times 6+2 \times 6=5 \times 6$
5 is equal to 3 plus 2 , so 5 sixes is equal to 3 sixes plus 2 sixes.

Adjacent multiples of ___ have a difference of __.

We can partition one of the factors to make calculations easier.

$13 \times 7=10 \times 7+3 \times 7$
$=70+21$
= 91

$$
9=10-1
$$

$$
9 \times 4=10 \times 4-1 \times 4
$$

$$
=40-4
$$

$$
=36
$$

Multiplication and Division

Year 5

Multiplying and Dividing by 10 and 100 (1)

```
Vocabulary:
Multiply Divide Unitise Ten/Hundred times Bigger Smaller One-tenth the size
One-hundredth the size Gattegno chart Factor Product Multiple Groups of
Inverse Ones Tens Hundreds Tenths Hundredths
```


1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

$8 \div 10=0.8$
one-tenth of the size

$0.8 \times 10=8$
ten times the size
$8 \div 100=0.08$
one-hundredth of the size

8, made 100 times smaller is 0.08 .
8 divided by 100 is 0.08 .
First we had 8 ones, now we have 8 hundredths

$0.08 \times 100=8$

Multiplication and Division

Year 5

Multiplying and Dividing by 10 and 100 (2)

Vocabulary:

Multiply Divide Unitise Ten/Hundred times Bigger Smaller One-tenth the size One-hundredth the size Gattegno chart Factor Product Multiple Groups of Inverse Ones Tens Hundreds Tenths Hundredths

$$
\begin{aligned}
& 3.6 \times 10=36 \\
& 36 \div 10=3.6
\end{aligned}
$$

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

$18 \div 10=1.8$
one-tenth of the size
1.8 is one-tenth the size of 18

18 divided by 10 is 1.8.

is one-tenth/hundredth the size of __.
multiplied by $10 / 100$ is equal to _.
is $10 / 100$ times the size of __.

$1.8 \times 10=18$
ten times the size

We can multiply and divide numbers with digits greater than 0 by 10 or 100.

Generalisation
To multiply by 10, move each digit one place to the left. To multiply by 100, move each digit two places to the left. To divide by 10, move each digit one place to the right.

Multiplication and Division

Year 5

Multiplying and Dividing by 10 and 100 (3).

Vocabulary:

Multiply Divide Unitise Ten/Hundred times Bigger Smaller One-tenth the size One-hundredth the size Gattegno chart Factor Product Multiple Groups of Inverse Ones Tens Hundreds Tenths Hundredths

$\mathbf{0 . 2 7 \times 1 0 = 2 . 7}$	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900	
10	20	30	40	50	60	70	80	90	
$10.7 \div 10=0.27$	2	3	4	5	6	7	8	9	
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	

$4.4 \div 10=0.44$
one-tenth of the size

$0.44 \times 10=4.4$
ten times the size
0.27 is one-tenth the size of 2.7
2.7 divided by 10 is 0.27 .
__ divided by 10/100 is equal to__.
__ is one-tenth/hundredth the size of __.
__ multiplied by $10 / 100$ is equal to_.

__ is 10/100 times the size of __.

We can multiply and divide numbers with digits greater than
0 by 10 or 100.

Generalisation

To multiply by 10, move each digit one place to the left.
To multiply by 100, move each digit two places to the left. To divide by 10, move each digit one place to the right.

Multiplication and Division
Year 5
Find Factors and Multiples

Vocabulary:
Factor Multiple Composite Square Prime Common Factor Prime Factor
Factor Bug Array Positive Integer Working Systematically
Factor x Factor $=$ Product
Dividend \div Divisor $=$ Quotient

Manipulate the array and write the equations to support each representation.

Factor \mathbf{x} Factor $=$ Product
Use factor bugs to record pairs of factors.

Generalise:

When one is a factor, the product is equal to the other factor.

All positive integers have a factor of 1.

Every positive integer is a factor of itself.
The smallest factor of a positive integer is always 1. The largest factor of a positive integer is always
itself.

3

$$
3 \times 1=3
$$

4
$1 \square \quad 4 \times 1=4$
$8 \times 3=24$
$4 \times 6=24$
$2 \times 12=24$
$1 \times 24=24$
There are \qquad tiles. There are __rows and \qquad columns. So __and \qquad are factors of \qquad
Generalise: Numbers that have more than two factors are composite numbers.

Multiplication and Division

Year 5

Find Factors and Multiples

Vocabulary:

Factor Multiple Composite Square Prime Common Factor Prime Factor Factor Bug Array Positive Integer Working Systematically

Factor x Factor $=$ Product
Dividend \div Divisor $=$ Quotient

Use factor bugs to find
common factors and prime factors.

Make connections with factors and times tables. Make connections with factors of factors
\qquad is a factor of \qquad because it is in the \qquad times table.

Nine is a factor of all of these numbers.
Three is a factor of nine which means it is also a factor of all of these numbers.

Is 9 a factor of 54?

$$
54 \div 9=6
$$

9 and 6 are factors of
54.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Multiplication and Division

Year 5

Find Factors and Multiples

Introduce Multiples

Identify Common Multiples using a 100 square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Vocabulary:

Factor Multiple Composite Square Prime Common Factor Prime Factor
Factor Bug Array Positive Integer Working Systematically

Dividend \div Divisor $=$ Quotient

$7 \times 3=21$
Make statements about factors and multiples whilst increasing the amount of each counter in the array.
\qquad represents the number of counters in each row.
$\mathbf{7 \times 3 0}=\mathbf{2 1 0}$
$70 \times 3=210$
$10 \times 21=210$
__ represents the total value of the counters in each column.
\qquad represents the total value of the counters.

$$
\begin{aligned}
& 3,7,10,21 \text { and } 70 \text { are factors of } 210 \text {. } \\
& 210 \text { is a multiple of } 3,7,10,21 \text { and } 70 \text {. }
\end{aligned}
$$

(100) (100) (100) (100)
(100)
(100) 100
(100) 100
(100)
(100)
100
(100)

100
(100)

100
(100) (100)
$7 \times 300=2,100$
$700 \times 3=2,100$
$100 \times 21=2,100$

Multiplication and Division

Year 5

Multiply using a Formal Written Method (1)

```
Vocabulary:
Ones Tens Hundreds Thousands Represents Partition Recombine
Multiply Unitising Partial Product Aligned Calculation Expanded layout
Compact layout Equation Regroup Algorithm
Factor x Factor = Product
```


Vocabulary:

Ones Tens Hundreds Thousands Represents Partition Recombine Multiply Unitising Partial Product Aligned Calculation Expanded layout Compact layout Equation Regroup Algorithm

Factor x Factor $=$ Product

Move between representations of dienes and expanded written multiplication.

Multiplication and Division

Year 5

Multiply using a Formal Written Method (2)

```
Vocabulary:
Ones Tens Hundreds Thousands Represents Partition Recombine
Multiply Unitising Partial Product Aligned Calculation Expanded layout
Compact layout Equation Regroup Algorithm
Factor x Factor = Product
```


Multiplication and Division

Year 5

Divide using a Formal Written Method (1)

Vocabulary:

Partitive (sharing) Quotitive (grouping) Ones Tens Hundreds Thousands Represents Divide Unitising Dividend Divisor Quotient Partial Quotient Aligned Calculation Equation Exchange Algorithm 'Sharees' Divisible Remainder Short Division

Step 3 - share the 1 s :

Use sticks to represent partitive (sharing) context where the dividend is divisible (to give a whole number). Skip count in multiples of the divisor.

$$
84 \text { sticks shared equally between } 4 \text { children. How many sticks each? }
$$

Step 2 - share the 10 s:

Multiplication and Division

Year 5

Divide using a Formal Written Method (2)

Vocabulary:

Partitive (sharing) Quotitive (grouping) Ones Tens Hundreds Thousands Represents Divide Unitising Dividend Divisor Quotient Partial Quotient Aligned Calculation Equation Exchange Algorithm 'Sharees' Divisible Remainder Short Division

| $84 \div 4$ | $=$ | 21 | 21
 84 |
| :---: | :---: | :---: | :---: | :---: |
| dividend $\quad \div$ divisor | $=$ | quotient | quotient
 divisor)dividend |

72 sticks shared equally between 3 children. How many sticks each?

$72 \div 3=$ \square
Step 1 - write the divisor and the dividend:
$73 \div 3=$ \qquad

7 tens $\div 3=2$ tens $r 1$ ten
13 ones $\div 3=4$ ones $r 1$ one

Step 3 - exchange:

Step 2 - share the 10 s:

$$
7 \text { tens } \div 3=2 \text { tens r } 1 \text { ten }
$$

Step 4 - share the 1 s :

Apply the same representations though this time include a remainder.

Then extend to division of 3 digits by one digit and where there can be no hundreds cannot be shared.

If dividing the hundreds gives a remainder of one or more hundred, we must exchange the remaining hundreds for tens.
$612 \div 4=153$

$$
\begin{array}{r}
153 \\
4 \longdiv { 6 ^ { 2 } 1 2 }
\end{array}
$$

$$
\begin{gathered}
7 \text { tens } \div 3=2 \text { tens r } 1 \text { ten } \\
12 \text { ones } \div 3=4 \text { ones }
\end{gathered}
$$

2 hundreds $=20$ tens
21 tens $\div 4=5$ tens $r 1$ ten
1 ten $=10$ ones
12 ones $\div 4=3$ ones

Addition, Subtraction, Multiplication and Division

Year 6

Quantify additive and multiplicative relationships

Vocabulary:					
Additive Multiplicative	Relationship	Represents	Compose	Combine	
More than Less than	Plus + Minus -	Equal to =	Addition	Subtraction	
Multiply x One-	of Equation	Expression	Bar Model	Whole	
Difference Multiplier	Unknown Seq	uence			
Addend + Addend = Sum Factor x Factor $=$ Product (Multiplicand x Multiplier $=$ Product)					
Minuend - Subtrahend =	Difference	Dividend \div	Divisor = Qu	otient	

$$
250 \times 4=1,000 \quad 1000 \div 4=250
$$

The relationship between two numbers can be expressed both additively and multiplicatively.

Finding the difference can help calculate the unknown terms in a sequence.

Finding the known multiplier can help calculate the unknown terms in a sequence.

Addition, Subtraction, Multiplication and Division

Year 6

Quantify additive and multiplicative relationships

$$
\frac{1}{3} \text { of } ?=10
$$

10

Calculate the unknown whole by recognising how many parts the whole has been divided into.

30		
10	10	10

$$
\frac{1}{3} \text { of } 30=10
$$

Addition and Subtraction

Year 6

Derive Related Calculations

Vocabulary:

Additive Multiplicative Relationship Represents Equation Unknown Re- arrange Inverse Place Value Properties Commutative Associative Distributive Compensation

Addend + Addend $=$ Sum \quad Factor x Factor $=$ Product (Multiplicand x Multiplier $=$ Product)
Minuend - Subtrahend = Difference \quad Dividend \div Divisor $=$ Quotient

$252=3 \times 84$	$252=3 \times 84$	$252=3 \times 84$
$2,520=30 \times \square$	\square	$\square=3 \times 85$

$625-148=477$	$625-148=477$	$625-148=477$
$6,250-1,480=\square$	$625-70-\square=477$	$625-248=\square$

$14.8+7.6=22.4$	$14.8+7.6=22.4$	$14.8+7.6=22.4$
$1,480+\square=2,240$	$\square-7.6=14.8$	$12.8+\square=22.4$

$4,800 \div 25=192$	$4,800 \div 25=192$	$4,800 \div 25=192$
$25 \times 192=\square$	$4,800 \div 250=\square$	

Addition and Subtraction

Year 6

Solve Problems involving Ratio Relationship

Vocabulary:

Additive Multiplicative Relationship Represents Equation Unknown Scalefactor Ratio Ratio Table ___ times the size one____ the size of Vertical Horizontal

Factor x Factor $=$ Product (Multiplicand x Multiplier $=$ Product $)$
Dividend \div Divisor $=$ Quotient

Ratio table to compare sets of information.

For every \qquad there are \qquad -

For every 1 litre of petrol, you can drive $\mathbf{7}$ miles.
For every 7 miles you will drive, you need 1 litre of petrol.

Extend sequences using knowledge of patterns

 based on ratio table.

Explore vertical and horizontal relationship between numbers.

\qquad
For every there are .

Identify the scale-factor in order to find unknown values.
\qquad
\qquad
\qquad times the size of \qquad .

Therefore I must multiply/divide by \qquad _. __.
\qquad -

Addition and Subtraction

Year 6

Solve Problems with Two Unknowns
Vocabulary:

Additive Multiplicative Relationship | Represents Equation Two Unknowns |
| :--- |
| Scale-factor Ratio ___ times the size |
| one___ the size of Total Bar Model |
| Structure |

$B=p+y$

$B=r+b$

B	
p	y

p

Use Cuisenaire to find 2 bars of total

 length that are equal to another.There is more than one solution to the problem.

There can be infinite solutions to a problem.

$$
\square
$$

F

Solve multiplicative problems with two unknowns when the total is known.

v \square

The two numbers are 16 and 4.

